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Solitary waves in discrete media with four-wave mixing

R. L. Horne,l”‘< P. G. Kevrekidis,z’* and N. Whitaker’
1Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA

2Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

(Received 24 September 2005; published 1 June 2006; corrected 13 June 2006)

In this paper, we examine in detail the principal branches of solutions that arise in vector discrete models
with nonlinear intercomponent coupling and four wave mixing. The relevant four branches of solutions consist
of two single mode branches (transverse electric and transverse magnetic) and two mixed mode branches,
involving both components (linearly polarized and elliptically polarized). These solutions are obtained explic-
itly and their stability is analyzed completely in the anticontinuum limit (where the nodes of the lattice are
uncoupled), illustrating the supercritical pitchfork nature of the bifurcations that give rise to the latter two,
respectively, from the former two. Then the branches are continued for finite coupling constructing a full
two-parameter numerical bifurcation diagram of their existence. Relevant stability ranges and instability re-
gimes are highlighted and, whenever unstable, the solutions are dynamically evolved through direct computa-
tions to monitor the development of the corresponding instabilities. Direct connections to the earlier experi-
mental work of Meier et al. [Phys. Rev. Lett., 91, 143907 (2003)] that motivated the present work are given.
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I. INTRODUCTION

Recently, nonlinear Hamiltonian lattice dynamical sys-
tems with a large number of degrees of freedom have be-
come a focal point for a variety of application areas [1].
Several diverse physical contexts in which such models
(typically discrete in space and continuous in the evolution
variable) arise are (i) dynamics of optical beams in discrete
media in nonlinear optics [2], (ii) temporal evolution of
Bose-Einstein condensates (BECs) in optical lattices in soft
condensed matter physics [3], and (iii) DNA double strand
modeling in biophysics [4].

A prototypical model, applicable to different degrees of
approximation, in all of the above contexts is the so-called
discrete nonlinear Schridinger (DNLS) equation. This model
was first proposed in [5] and implemented for the first time
experimentally in Refs. [6,7]. A systematic presentation of
the experimental results in optical systems is given in a re-
cent work [8]; for BEC-related experiments, see [3,9]. In this
model, self-localized excitations (discrete solitons) are pos-
sible as a result of the interplay between the Kerr nonlinear-
ity and discrete linear coupling. Many properties of optical
discrete spatial solitons have been systematically explored in
theory and experiment, including generalizations to diffrac-
tion management [10,11], diffraction-managed solitons [12],
and soliton transport and gating [13-16].

On the other hand, a topic that has received considerably
less attention has been the study of vector analogs of the
DNLS equation. A number of studies have addressed the
existence and stability of diverse families of solitary waves/
localized states in the DNLS equation (see [17-19]). These
issues have also been studied for both cubic and quadratic
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nonlinearities [18,20] in one and two dimensions [17,21,22].
However, the first experimental realization for such a system
occurred rather recently [23] (see also the very recent paper
[24]). This work sheds new light on the theoretical investi-
gations of this topic, in that the relevant model for the cor-
responding AlGaAs waveguide array experiment included
four wave mixing (FWM) terms that were rarely included in
previous theoretical studies. Subsequent studies (see [25,26])
addressed a number of specific properties of the model sys-
tem put forward in [23]. Such properties related to switching,
instability-induced amplification, modulational instability as
well as an analysis of the energy barrier between stable dis-
crete solitary waves centered on a lattice site versus two
lattice sites.

The focus of the present study is to extend the analysis of
the vector NLS lattice system incorporating FWM which is
relevant to the experiments of [23]. More specifically, we
provide a systematic analysis of the existence and stability
requirements of the principal solitary wave modes of the sys-
tem. In so doing, we have found that the concept of the
anticontinuum limit (in which the coupling between
waveguides is absent) provides a powerful tool for the study
of the existence and stability concerning these solutions.
Subsequently, continuations in the coupling parameter are
used to construct a full two-parameter bifurcation diagram
that gives the complete picture of stability for both one-
component as well as “mixed” mode solutions (involving
both components). We note that all of the results obtained via
our dimensionless model can be directly placed in the con-
text of the experimental results obtained in Refs. [23,24].

The remainder of the paper is organized in the following
way. In Sec. II, we present the theoretical model of interest
as well as proposing a setup that allows us to analyze the
existence and stability of the model’s solutions. In Sec. III,
we fully analyze the relevant solutions and their stability in
the anticontinuum limit (i.e., zero coupling between adjacent
waveguides). In Sec. IV, we proceed to numerically deter-
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mine solutions to the model for nonzero coupling and ob-
serve how the bifurcation points and stability features are
modified for this case. The instability regions obtained in
Sec. IV are then monitored through direct numerical experi-
ments in Sec. V. Finally, in Sec. VI, we summarize our find-
ings and present our conclusions.

II. MODEL AND SETUP
Following [23], we will use the dimensionless model

lan =—da,— e(an+1 + an—l) - (|an|2 + A|bn|2)an - Bbza*

n-n?

(1)

ibn = bn - E(bn+l + bn—l) - (|bn|2 +A|an|2)bn - Bazb* (2)

n-n-

In these equations, a, and b, are the appropriately normal-
ized, slowly-varying, complex field envelopes for the trans-
verse electric (TE) and transverse magnetic (TM) polarized
waves, respectively. The constants A and B are respectively
associated with the cross-phase modulation (XPM) and four-
wave mixing (FWM) and were evaluated in [23] to be ap-
proximately equal to A=1 and B==1/2. Wherever possible,
the results obtained in this analysis will be given for general
A and B, even though the above values have been used in the
specifics of our numerical computations. The overdot in Egs.
(1) and (2) denotes differentiation with respect to the evolu-
tion variable (which is z in this case) and the * denotes the
complex conjugate. For the properties of the waveguide ar-
ray and incident light used in the experiment (see [23] for
details), the dimensionless power

P=2 (la,+|b,» 3)

is connected with its dimensional analog P, (measured in
Watts) according to P;=56.4P. Furthermore, the dimension-
less coupling € used in [23] was €=0.921. This is crucial
since it serves to highlight differences between the results
obtained in the computational analysis of [23] and the gen-
eralization of the corresponding results presented herein.
More generally, we take € to be a free parameter in our
analysis. We note that € is related to the dimensional cou-
pling constant, «, given in [23], via €=2.741«. Here, « is
measured in mm~'.

We look for stationary solutions in the form, a,=a,e'®
and bn=l;neiqz and subsequently dropping the tildes, we ob-
tain the corresponding stationary equations,

(61 - l)an - e_(an+1 + an—l) - (|(1”|2 +A|bn|2)an - Bbﬁa; = 0’

(4)

(C] + 1)bn - E(bn+1 + bn—l) - (|bn|2 +A|an|2)bn _Baib; =0.
(5)

In this context, g is an additional free parameter, namely, the
propagation constant (g is also used as a free parameter for
the computations presented in [23]). Our parameter q is re-
lated to the corresponding dimensional propagation constant,
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8, given in [23], by 6=0.3648g. Here, & is measured in
mm~!,

It is worth pointing out that for Fig. 1 in Ref. [23], the
range of parameters used in their computations appear to
correspond to the case of g > 3. This is verified by our analy-
sis below. Again, this is highlighted to account for the dis-
parities of some of the conclusions obtained in [23] with the
ones of their generalizations presented in the following sec-
tions.

To perform linear stability computations, provided that an
exact solution (ag,bg) of the stationary Egs. (4) and (5) has
been obtained (either analytically in the anticontinuum limit,
or numerically for e# 0), we use the perturbation ansatz,

a,=a’+ Sc e + d,e'™), (6)

b, = bg + 8(f,e'" + gnei“’*z). (7)

In this ansatz, §is a (small) formal expansion parameter and
o is the eigenfrequency of the perturbation eigenvector
(co>d’,fn,80)T (where the superscript denotes the transpose).
Then, upon lengthy but straightforward calculation, one ob-
tains the linearized matrix eigenvalue problem to O(J).
These dynamical equations have the form,

Cl‘l Cn
" d, L d, ’
Ja Ju
& &

where

The N X N (where N is the size of the lattice) blocks of the
linearization matrix are given by

Liy=(qg—1)—e(Ay+2)—2|a’]> - A|pY)?, (8)
Liy=-(ay))* - B(b))?, )
Liy=—Aad)(b°)* = 2B(a)*D?, (10)
Liy=-Ad’p, (11)

Ly =-L},, (12)

Ly,=-Ly, (13)

Lyz=—L},, (14)

Lyy=-Lj;, (15)

Ly =L}, (16)

Ly =Ly, (17)
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Lyy=(q+1) - by +2) =2 - Ala,’,  (18)
Ly =- (b))’ - B(a,)’, (19)

Ly =—-Lj,, (20)

Lyp=-1Lys, (21)

Ly=—-L}, (22)

Lyy=—Ls3. (23)

In the above, we use the short-hand notation (A,+2)z,
=Z,+1+2,_1, Invoking the concept of the discrete Laplacian
A,. With this linearized matrix eigenvalue problem, we can
establish a criterion for the existence and stability of solu-
tions to this system by examination of our system at the
anticontinuum limit (i.e., when €=0).

III. THE ANTICONTINUUM LIMIT
A. Existence

We begin by examining Egs. (4) and (5) for the case
€=0. Setting a,=r,e'% and b,=s,¢'? in this case, one finds

(q=1) = (r; +Asp) = Bspe? %) = 0, (24)

(g+1)- (si + Arﬁ) - Brie‘ziwn_@n) =0. (25)

From the above, we infer that for solutions to exist in this
limit it is necessary for 2(6,— ¢,) to be an integer multiple of
7r, hence, we obtain that

ar
0}1 - ¢n = k_» (26)
2
with k e Z.

The simplest possible solutions are the ones that involve
only one of the two branches and were hence termed TE and
TM modes respectively in [23]. The TE solution of Egs. (24)
and (25) has the form (in the present limit)

r,=%\Vg-1 s,=0 (27)

and exists only for g> 1. On the other hand, the TM mode
features

—

r,=0 s,=%\g+1, (28)

and is only present for g>—1.

Also, there are two possible mixed mode solutions per-
mitted by the quantization condition of Eq. (26), allowing the
exponential of Egs. (24) and (25) to be +1 or —1, respec-
tively. The first one [¢*(%~#2=1] was characterized as a lin-
early polarized (LP) branch in [23], involving in-phase con-
tributions from both the TE and TM components. In this
case, the linear system of Egs. (24) and (25) has the general
solution,

PHYSICAL REVIEW E 73, 066601 (2006)

A \/(A+B>(q+1)—<q—1>’ 29)

(A+B)*-1

(A+B)(g-1)-(g+1)
(A+B)*-1

§,= % (30)
If (A+B)>>1 (which is the case in the experimentally
relevant setting), this branch only exists for (A+B)(g+1)
>(g—1) and (A+B)(g—1)>(g+1) [the sign of the two
above inequalities needs to be reversed for existence condi-
tions in the case of (A+B)><1]. Among the two conditions,
in the present setting, the second one is the most “stringent”
for the case A=2B=1, which yields the constraint g=35
(while the first condition requires for the same parameters
q=-5).

The second possibility for a mixed mode [stemming from
¥t =_1 in Eqs. (24) and (25)] yields the, so-called,
elliptically polarized mode (EP) [23], involving a 7r/2 phase
shift between the TE and TM components. The relevant am-
plitudes in this case are

. \/(A—B)<q+1>—<q—1>
T (A-B)’-1

; (31

A (A-B)(g 12) (q+1)_ (32)
(A-B)"-1

The condition for this branch to exist if (A-B)*<1 is g—1
=(A-B)(q+1) and g+1=(A-B)(g—1) [once again the
signs should be reversed if (A—B)>>1]. In this case, the first
condition is more constraining than the second, imposing for
our special case of interest herein (A=2B=1) ¢=3 (while
the second condition only requires g =-3).

B. Stability

We can now turn to the study of the stability of the cor-
responding branches via the anticontinuum limit (e=0). The
major advantage of this limit is that all the blocks of the
linearization matrix L now become diagonal. Furthermore,
the structures that we consider, per the branches presented
above, involve the excitation of a single site (all other sites
are inert) with amplitudes corresponding to the appropriate
TE, TM, LP, or EP modes. The interesting by-product of this
formulation is that all inert sites end up yielding purely di-
agonal entries in the stability matrix equal to (¢—1) in the
first (2N—1) X (2N—1) blocks and (g+1) in the second set of
(2N-1) X (2N-1) blocks. Hence the matrix will have 2N
—1 eigenfrequencies equal to (g—1) and equally many eigen-
frequencies of (g+1). The remaining 4 X 4 matrix will cor-
respond to the single excited site of the lattice and its eigen-
values will yield the eigenfrequencies pertaining to the
corresponding branch of solutions. Hence, by solving this
considerably simpler eigenvalue problem, we can infer the
full stability picture for €# 0 from the anticontinuum limit.
This, we believe, is a major advantage in using this ap-
proach.

We note that due to the fact that the power is conserved
for our system (see previous section), two of the relevant
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eigenvalues of this 4 X4 problem should be identically 0.
This is confirmed in the computations presented here.

Now, taking the case for the “TE” mode in Egs. (8)—(23),
we determine the remaining pair of eigenvalues in this case,

WTg = * V/(q + 1)2 + (A2 - BZ)(C] - 1)2 - 2A(q2 - 1.
(33)

Examining our model for the experimental case, A=1,
B=1/2, and ¢ >0, we find that this eigenfrequency is real for
¢ <5, while it is imaginary for ¢>35 (hence, implying the
presence of an instability, since the corresponding eigenvalue
N=iw becomes real and exponential growth occurs xe?).
Indeed, we can show that for the TE mode, stability is en-
sured for 1 <g<S5.

For the TM mode, the corresponding expression can be
obtained as

o= = \(g—1)>+(A7=B)(g+1)* - 24(g* - 1),
(34)

and for the case of interest, stability is ensured for —1<<g
<3, while instability ensues (due to a real eigenvalue) for
q>3.

For the LP mode, the expression for the corresponding
eigenfrequency is too cumbersome to provide in analytic
form (even though such a form has been obtained) for gen-
eral A and B. Hence, we will restrict ourselves to the case of
A=2B=1, where the relevant eigenfrequency reads

_
242
wpp= * %\rqz —2s, (35)

implying stability for ¢=5 (which coincides with the
branch’s existence region).
Finally, for the EP mode, the expression similarly reads

2\’5 IS
wgp = iTqu—9, (36)

implying, in principle, stability for g=3 (again, coinciding
with the solution’s domain of existence); see, however, the
discussion below for this branch.

From the above observations, one can put together the
complete bifurcation picture of the four branches and their
corresponding stability in the anticontinuum limit (again, we
present this here for concreteness for A=2B=1). More spe-
cifically, the TE branch exists for g=1 and is stable for
1=<g=35. For ¢>5, the branch is destabilized as a new
branch emerges, namely the LP branch, through a pitchfork
bifurcation; notice that the TM component of this branch, per
Eq. (30) is exactly zero at g=5, hence it directly bifurcates
from the TE branch. The two branches of this supercritical
pitchfork correspond to the two signs of s, in Eq. (30). The
bifurcating branch “inherits” the stability of the TE branch
for all larger values of ¢, while the latter branch remains
unstable thereafter.

In a similar development, the TM branch exists for
g=-1 and is stable in the interval —1 <¢g=<3. However, at
g=3, a new branch (in fact, a pair of branches) bifurcates
acquiring nonzero r,,, beyond the bifurcation point, as per Eq.
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FIG. 1. (Color online) The full bifurcation diagram for the co-
ordinates (r,,s,,q) for €=0, illustrating the two supercritical pitch-
fork bifurcations at g=3 and ¢=5. These give rise to the formation
of the EP branch (the former) and the LP branch (the latter). The
blue lines illustrate stable branches, while the red lines show the
unstable ones.

(31). This is accompanied by the destabilization of the TM
branch (due to a real eigenvalue) and the apparent stability
of the ensuing EP branch for all values of ¢ > 3.

Figure 1 shows how the two supercritical pitchfork bifur-
cations are generated as a function of the coordinates
(r,,5,,q). We can now turn on the coupling and see how the
existence and stability of each branch is affected by varying
q and €.

IV. FINITE COUPLING

One of the key features that will help us in our analysis of
the finite coupling case consists of determining where the
bands of the continuous spectrum of the linearized problem
occur. This is obtained analytically using the plane wave
ansatz a,~e'®~®9 and b,~ ¢*=92)_ Plugging our ansatz
into the coupled linearized problem [essentially, using Egs.
(1) and (2) and ignoring the nonlinear terms], the resulting
dispersion relations are

w=(g-1)-2€ecos(k), (37)

w=(g+1)-2ecos(k). (38)

Hence the continuous spectrum (in the infinite lattice case)
will consist of the frequency intervals [g—1-2€,q—1+2¢€]
and [g+1-2€,q+1+2€]. As may be expected, for €=0,
these intervals degenerate to two single points (w=¢—1 and
w=¢g+1), in consonance with the discussion of the previous
section. But perhaps more importantly, for g—-1<2e
[equivalently for e€>(g—1)/2], the continuous spectrum
branch will be crossing the origin, leading to the collision of
the eigenvalues with their mirror symmetric opposites, that
will in turn lead to instabilities. Hence, we need only con-
sider couplings in the interval e e [0,(g—1)/2].

We now numerically examine each of the main four
branches, using one-parameter continuation in the above-
mentioned interval of €’s for different values of g and thus
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FIG. 2. (Color online) TE branch: The top left set of panels shows the details of the TE branch as a function of € for g=3. The topmost
panel shows the norm of the branch as a function of €, while the left and right panels show the solution profile and its spectral plane for
€=0.1 and €=0.9, respectively. The top right set of panels shows similar details, but for g=5.5. The top right panel in the right case, which
is unstable for small €, shows the most unstable eigenvalue real part. The middle and bottom panels show the (unstable) solution and its
stability for €=0.5 and the (stable) one for e=1.5, respectively. The bottom panel shows the two parameter bifurcation diagram of the
coupling € as a function of ¢ (for details see text). All the relevant existence and stability regimes have been accordingly labeled. The top
left and top right set of panels can be considered as two “vertical cuts” across this bifurcation diagram for g=3 and 5.5, respectively.

constructing a two-parameter bifurcation diagram for each
branch. Notice that the solutions are numerically obtained for
each pair of (g, €) by means of a fixed point iteration. Once
convergent to within a preset tolerance (1078 typically for the
computations presented herein), the procedure is followed by
numerical linear stability analysis, obtaining the eigenfre-
quencies for the linearization matrix L.

A. TE branch

The continuation of the TE branch is detailed in Fig. 2. It
turns out that especially in the case of this branch, solutions
cannot be obtained for €>(g—1)/2, i.e., the branch termi-
nates at that point with its amplitude going to zero at this
critical point. Within its region of existence, the branch has a
domain of stability and one of instability. The point of sepa-
ration between the two in the anticontinuum limit, studied
previously, was the critical point of g=5. For € # 0, the sepa-
ratrix curve is shown in Flg 2 and can be well approxi-
mated by the curve €5~ (412/5)\g—5. Hence for g <5, the
solution is stable for all values of € in its range of existence

(0<e<(g-1)/2), while for g=5, the solution is only stable
for ey <€e<(g—1)/2 and unstable (due to a real eigenvalue
pair) for 0< e< €.

B. TM branch

The TM branch is considerably more complicated, struc-
turally, than its TE counterpart. First, it does not disappear
beyond the critical e=(g—1)/2, however, it does become un-
stable as predicted previously, hence we will, once again,
restrict ourselves to this parameter range. Furthermore, simi-
larly to the TE branch case, there is an e, below which the
branch is always unstable, whereas for €> €}, the branch
may be stable. At the anticontinuum limit, the critical point
for the instability is g=3, as discussed previously; for g >3,
the critical point is obtained numerically in Fig. 3. It can be
well approximated (close to ¢g=3) by €f,,~(9/ 10)\g—-3.

However, within the range of potential stability [0<e€
<(g-1)/2 for g<3, and e;y<e<(g-1)/2 for g=3], we
observe an additional large region of instability in the two
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FIG. 3. (Color online) TM branch: the figures are similar as in Fig. 3, but now for the TM branch. The top left set of panels shows the
continuation in € for g=2.5, along with the special cases of e=0.1 (stable) and €=0.5 (unstable due to quartet of eigenvalues) in the left and
right middle and bottom panels. The top right set of panels shows the g=3.5 (unstable) case with the middle/bottom panels corresponding
to €=0.5 (unstable due to real eigenvalue pair) and €=0.65 (stable), respectively.

parameter bifurcation diagram of Fig. 3, due to a complex
quartet of eigenvalues. This instability appears to
“emanate” from the point with (g,€)=(2.2,0) in the
anticontinuum limit, and to linearly expand its range
as € increases. Hence, we will try to understand it at the
level of e=0. What happens at the value of g=2.2 in the €
=0 limit is that the point spectrum eigenfrequency of Eq.
(34) “collides” with the continuous spectrum point of con-
centration, corresponding to w=g—1. However, the eigen-
vector of this eigenvalue [34] has a Krein signature (see, e.g.,
[27-29] for relevant definitions of this signature) opposite to
that of the continuous band at w=¢g—1. Hence, according to
Krein theory [30], the resulting collision leads to the forma-
tion of a quartet of eigenvalues emerging in the complex
plane and, in turn, implying the instability of the TM con-
figuration. As € is varied from 0, the continuous spectrum
band grows linearly in €, hence the corresponding interval of
q’s, where this instability is present (due to the collision with
the opposite Krein sign eigenvalue) also grows at the same
rate. Along the same vein, it is worth pointing out that the
line of this instability threshold and that of e=(g—1)/2 are
parallel.

0.2
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FIG. 4. (Color online) LP branch: The top left and top right
panel shows the dependence on € of the respective powers
of the two components P, and P, (P=P,+P,), for g=5.5. The
middle and bottom panel panel show the profile and the linear sta-
bility of the LP mode while it is still present (e=0.5; left panels)
and of the TE mode that it degenerates to, beyond €7 (e=1; right
panels).
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FIG. 5. (Color online) EP branch: The panels are analogous to those of Fig. 3 but for the EP branch; the top right panel, however, shows
the nonvanishing power of the second component. Top left panels: g=3.5. The middle and bottom panels correspond to
€=0.5< € (left panels) and to e=1> €}, (right panels). In the latter case, the solution has already degenerated into a TM mode. Top right
panels: g=4.5. The middle and bottom panels correspond to the stable case of e=0.1 (left panels) and the unstable case of e=1 (right panels).
The bottom panel shows the two-parameter diagram for this mode. The region for ¢ >3 and 0 < e< €}, where this modes exists is separated
by the dashed line into a stable and an unstable regime. For comparison the extension of the regions of stability/instability of the TM mode
from Fig. 3 are also included. We note that the choice of star symbols (instead of circles as, e.g., in Figs. 2 and 4) in the spatial profile of

a, is used to indicate that the imaginary part of a, is shown.

C. LP branch

The mixed LP branch, involving in-phase contributions
of the TE and TM has been continued for various values of
g>5, as a function of e. Recall that this branch emerges
through a supercritical pitchfork as ¢ is varied for fixed e
(see Fig. 2). In an exactly analogous way, if € is varied for a
fixed ¢>5, the branch appears to terminate at e= €7 through
a subcritical pitchfork. Hence, the LP branch only arises for
0<e<eé€js and ¢>5 and it is stable throughout its interval of
existence. For €> €, this branch “degenerates” back into
the stable (for such €’s) TE mode. This is clearly illustrated
in Fig. 4 that shows the continuation of the LP branch as a
function of e for a fixed g=5.5. The top panels show the
norms of the two components illustrating that the second
component is absent for e€>ep=0.81 in this case. The
middle and bottom left panels show a case for e=0.5<eqg
where a genuine (and stable) TE solution exists, while the
corresponding right panels are for e=1> €7, past the critical
point where the LP solution degenerates into a TE mode.

D. EP branch

The case of the EP branch, analyzed in Fig. 5, is some-
what analogous to that of the LP branch. For fixed g close to
(and larger than) 3 and varying e, the branch exists and is
stable for 0 < e< €qy,. For larger values of €, the EP mode
degenerates into a TM mode, as is shown in the top left panel
of Fig. 5 for ¢=3.5 (cf. with the analogous for the LP case of
Fig. 4).

However, for ¢>3.62, this phenomenology appears to
change and an expanding (for increasing ¢) interval of oscil-
latory instability within the range of existence of the EP
branch (0<e<e€f,,) seems to arise. To rationalize this fea-
ture, we again turn to the anticontinuum limit. Just as in the
case of the (TM) branch from which it originates, the EP
branch has a point spectrum eigenfrequency given by Eq.
(36) which has a negative Krein signature and upon collision
with the continuous spectrum band of eigenfrequencies will
give rise to an instability. Setting the frequency of Eq. (36)
equal to g— 1, we obtain that this collision occurs at g=9. For
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FIG. 6. (Color online) This figure demonstrates the instability in
the TE mode when €=0.5 and ¢=5.5. The left panel shows the
space-time contour plot of the modulus square of the two fields
[Ja,(t)|? in the top panel and |b,(z)|? in the bottom panel]. The right
panel shows the evolution of the (square modulus of the) central
site of the configuration as a function of time.

lower values of ¢, this “collision” will occur for a finite
(nonzero) interval of values of e—see, e.g., the top right
panels of Fig. 5 for g=4.5—which, in turn, yields the region
of oscillatory instability of the EP mode, clearly separated
from its region of stability by a dashed line in the bottom
panel of Fig. 5.

In conclusion, the EP solutions exist in the regime where
the TM mode is unstable (cf. bottom panels of Figs. 3 and 5),
illustrated by the curve originating from the point (g, €)
=(3,0) in the anticontinuum limit. However, the EP solution,
as is shown in the top panels of the figure, may (top left) or
may not (top right) necessarily be stable in its region of
existence due to the appearance of an oscillatory instability
for sufficiently large g.

V. DYNAMICAL EVOLUTION OF UNSTABLE BRANCHES

We now examine a series of different instability scenarios
pertaining to the branches of solutions discussed above. In so
doing, we solve Egs. (1) and (2) using a fourth-order Runge-
Kutta algorithm. To ensure the validity of our numerical re-
sults, we have monitored the conservation of the power of
Eq. (3) and of the Hamiltonian (energy) of the system,

H=- 2 (da;anﬂ + ana;+1 + b;bnﬂ + bnb* ) + |an|2 - |bn|2

n+l
n

1 B * *
# 2l [+ Ala, Plo,) + (@6 + bi<an>2>).

(39)

The power is conserved to numerical precision, while the
Hamiltonian is conserved to 1 part in 10%. In all cases, 150
spatial sites are used in our computations.

Our first example, shown in Fig. 6, illustrates the case of
g=5.5 and €=0.5 for the TE mode. This is a case represen-
tative of the region of parameter space (cf. Fig. 2), where the
TE mode is unstable due to a real eigenvalue pair (while the
LP mode is stable). The solution actually coincides with the
steady TE branch until approximately time 10. The configu-
ration then deviates from the TE branch and subsequently
develops a breathing oscillation around a stable LP state.

The next three cases are concerned with the different
scenarios for the instability of the TM mode. Figure 7, with
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FIG. 7. (Color online) An instability of the TM mode is demon-
strated here with €=0.5 and ¢g=3.5. The left panel again shows the
space-time contour plot of the modulus square of the two fields
[Ja,(n)|* in the top panel and |b,|? in the bottom panel]. The right
panel shows the evolution of the (square modulus of the) central
site of the configuration as a function of time.

q=3.5 and €=0.5, is representative of the region of param-
eter space where the TM mode is unstable due to a real
eigenvalue pair, while the EP mode is stable. In this case, as
in the previous case, the solution coincides with the steady
TM mode up until approximately time 10. It is then observed
that for short times the configuration deviates from the TM
branch and oscillates around the (stable) EP configuration.
However, for longer times, the system appears to wander
away from the latter configuration and into a breathing state,
where the two components have roughly equal power and
exchange a small fraction of it (almost) periodically.

The second instability scenario of the TM branch, shown
in Fig. 8, involves the case of an eigenvalue quartet as, e.g.,
for g=2.5 and €=0.5 (cf. Fig. 3). In this case, we observe the
configuration departing from the unstable TM steady state
and resulting into a breathing solution involving both com-
ponents. In this and the remaining cases, the departure from
the steady state occurs later than in the first two cases.

Next, in Fig. 9, we examine the evolution of the instabil-
ity for the TM mode in the presence, also, of continuous
spectrum instabilities for g=2.5 and e=1 (cf. Fig. 3). In this
case a different phenomenology occurs. The mode is com-
pletely destroyed in favor of small amplitude excitations.

Finally, we examine the evolution of the instability for an
elliptically polarized mixed mode case within its regime of
oscillatory instability (cf. Fig. 5), for €=0.5 and ¢=5. We
observe the configuration departing the steady state and giv-
ing rise to a persistent breathing state involving both compo-
nents (see Fig. 10).

VI. CONCLUSIONS

In this paper, we have examined in detail the principal
modes arising in the discrete vector lattices of AlGaAs

5 |

1000 0 200 400 600 800 1000
t

0 500
t

FIG. 8. (Color online) The instability of a TM mode is shown
here for €=0.5 and ¢=2.5, using exactly the same diagnostics as in
Fig. 7.
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FIG. 9. (Color online) Same as the previous two figures, but for
the case of e=1 and g=2.5. Here the nonlinear mode is completely
destroyed by the instability and results into small amplitude ex-
tended waves.

waveguides, motivated by the recent experimental investiga-
tions of [23,24]. We have constructed the full two-parameter
bifurcation diagrams of all four principal branches of solu-
tions. These include the transverse electric and transverse
magnetic modes (occupying respectively each of the two
components of the vector lattice), but also the linearly polar-
ized (two components in or out of phase) and elliptically
polarized modes (two components out of phase by odd mul-
tiples of 7r/2). The latter two modes, emerge from the former
two in pairs through a pitchfork bifurcation that has been
completely elucidated through the study of the system in the
anticontinuum limit. In fact, the anticontinuum limit has pro-
vided us with a very effective tool to analytically highlight
existence and stability properties of the different branches as
well as potential instabilities. We have continued this mono-
parametric picture (as a function of the propagation constant
of the solutions, but at zero coupling) to finite coupling flesh-
ing out the regimes of stability and instability, and of exis-
tence as well as of disappearance of the relevant branches of
solutions. The relevant two-parameter diagrams (Fig. 2 for
the TE mode, Fig. 3 for the TM, Fig. 4 for the LP, and Fig. 5
for the EP mode) constitute the main result of the present
paper. We have, however, complemented our existence and
stability analysis with direct numerical “experiments,” illus-
trating the different instability scenario for the modes of in-
terest and how they can either lead to the excitation of other
branches, or even to the complete annihilation of the relevant
localized waves.
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FIG. 10. (Color online) An unstable elliptically polarized mode
with €=0.5 and ¢=5 is monitored by the same diagnostics as in the
previous figures.

It is noteworthy that the process of obtaining such a mul-
tiparametric bifurcation picture has allowed us to reveal a
considerably deeper understanding of the system’s parameter
space, in comparison to earlier publications (such as, e.g., the
theoretical conclusions of the works of [23,24]). In particu-
lar, for instance, the limited parameter space examined in the
latter setting (where a monoparametric continuation was
used for €=0.921 and apparently varying g only for g>3)
led the authors to infer that the TM mode is always unstable
and similarly that the bifurcating EP mode is also unstable.
Here, we have illustrated explicitly regions of stability of
each of these modes in the parameter space of the system
(which definitely exist for lower values of the coupling).

Finally, while the recent investigations of the various prin-
cipal branches have offered a rather substantial understand-
ing of their properties, there are multiple directions of future
interest in this topic that also appear within experimental
reach. Such examples consist of, e.g., the study of two-
dimensional waveguide arrays and of discrete solitons [31]
and vortices [32] in them. Another such example is the study
of more elaborate, multisite constructions, such as twisted
modes [33] even in one spatial dimension. While the above
directions of the examination of stationary states are of in-
terest in their own right, an additional dimension of rel-
evance revealed by our direct instability simulations of Sec.
V pertains to the systematic study of the existence and sta-
bility of breathing excitations due to their principal role in
the system’s dynamics. Such investigations are currently in
progress and will be reported in future publications.
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